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Abstract We study the McKean–Vlasov equation on the finite tori of length scale L in
d-dimensions. We derive the necessary and sufficient conditions for the existence of a phase
transition, which are based on the criteria first uncovered in Gates and Penrose (Commun.
Math. Phys. 17:194–209, 1970) and Kirkwood and Monroe (J. Chem. Phys. 9:514–526,
1941). Therein and in subsequent works, one finds indications pointing to critical transitions
at a particular model dependent value, θ� of the interaction parameter. We show that the
uniform density (which may be interpreted as the liquid phase) is dynamically stable for
θ < θ� and prove, abstractly, that a critical transition must occur at θ = θ�. However for this
system we show that under generic conditions—L large, d ≥ 2 and isotropic interactions—
the phase transition is in fact discontinuous and occurs at some θT < θ�. Finally, for H-stable,
bounded interactions with discontinuous transitions we show that, with suitable scaling, the
θT(L) tend to a definitive non-trivial limit as L → ∞.

Keywords Phase transitions · Mean-field approximation · Kirkwood–Monroe equation ·
H-stability

1 Introduction

This paper concerns the McKean–Vlasov equation [26] which describes the time-evolution
of a density ρ = ρ(x, t),

ρt = �xρ + θLd∇x · ρ∇x(V � ρ). (1)

In the above V is a real-valued function of x which has the meaning of interaction poten-
tial, we take x ∈ T

d
L—the d-dimensional torus of scale L—and � denotes the convolution
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in x. It is noted that the above dynamics is positivity and L1-norm preserving thus ρ(x, t)

has a probabilistic interpretation which we relate to particle or fluid density. It is hereafter
assumed that ρ integrates to one. As discussed in [33], the dynamics in (1) is a gradient flow
(with respect to a certain distance in the space of probability measures) for the “free energy”
functional

Fθ (ρ) =
∫

T
d
L

ρ logρdx + 1

2
θLd

∫
T

d
L
×T

d
L

V (x − y)ρ(x)ρ(y) dx dy. (2)

In particular all steady state solutions of (1) must be stationary points of the functional in (2).
These densities satisfy an Euler–Lagrange equation, namely

ρ(x) = e−θLd [ρ�V ](x)∫
T

d
L

e−θLdρ�V dx
(3)

sometimes known as the Kirkwood–Monroe equation [20]. (The above follows from the
fact, readily checked, that the dynamical equation can be recast into the form

d

dt
Fθ (ρ) = −

∫
T

d
L

ρ

∣∣∣∣∇ log
ρ

e−θLdV �ρ

∣∣∣∣
2

dx.)

The volume factor, Ld , associated with the coupling strength in (1)–(3) may appear unfa-
miliar to some but it is in fact a principal subject of this note. Otherwise, θ corresponds to
interaction strength: E.g., inverse temperature and, in a sense we do not make precise, the
underlying density of the fluid.

We shall not digress with a detailed discussion of the motivations for the study of (1)–(2).
It is sufficient to mention the following:

• Equation (1) can be realized as the large N -limit of the N -particle Fokker–Planck equa-
tion under suitable rescaling of the interaction. This goes back to the original derivation
by McKean [26] and, even today, is an active topic of mathematical research. A partial
list of relevant papers: [3, 5, 23, 28–30].

• Equation (1) can be realized as a diffusive limit of the standard Vlasov–Fokker–Planck
equation. Cf. the derivation in [24].

• The model of chemotaxis introduced by Keller and Segel [19] is, in fact, precisely the
McK–V equation in slightly disguised form with a Newtonian (logarithmic) interaction;
cf. [15, 29] for a derivation from particle dynamics. For our purposes, the Keller–Segel
form of the interaction is overly singular—by no means a requirement dictated by biolog-
ical applications. Related models with biological applications are described in [1, 2, 7, 8,
10, 22]. The latter two are exactly the McK–V equation without the diffusive term.

• In a number of older works, beginning with [16] and [17] and including (but not limited
to) [12, 13, 18], and [21] (cf. the article [32] for additional information and references) the
van der Waals theory of interacting fluids in statistical equilibrium was elucidated as the
limit of “realistic” systems under scaling of the interaction range. A modified version of
the functional in (2), evaluated at its minimizer constitutes the free energy for these (lim-
iting) theories. Finally, in the remarkable work [20]—predating all of the above by over
two decades—the equation (3) for the equilibrium “distribution function” was inferred,
under certain approximations, by direct considerations.

It should be remarked that the scaling limits achieved in the first item are not always in
accord with those of the last. As such the volume factor is conspicuously absent in many
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modern mathematical treatments of these and related problems. However, on careful exam-
ination, the latter derivations contain the former in the static cases. Thus, for physically mo-
tivated stable interactions (which will be discussed in Sect. 3) with sensible thermodynamic
limits, this factor indeed belongs as written in (1)–(3). For unstable interactions—which may
have biological applications—the correct nature of the scaling has not been elucidated. How-
ever it appears that mathematically tractable problems in large or infinite volume emerge if
the factor of Ld is omitted.

1.1 Mathematical Assumptions and Notations

Since the majority of this work takes place in fixed volume, we will omit, whenever possible,
the L-dependence in our notation for the various classes of functions etc. that we employ. In
particular all Lp-norms on T

d
L will be unadorned.

The class of potentials that we consider in this work is described as follows: Foremost
we shall assume that the V are finite range, that is

V (x) = 0 if |x| > a.

We will always take L > a and thus we may define the remaining (minimalist) properties
as though V is a function on R

d . First, we take V ∈ L1 and, second we assume that V

is bounded below. The former is obviously required in order to make (good) sense of the
uniform state. As for the latter, if V → −∞ it is unreasonable to suppose that this happens
anywhere besides the origin. Even mild divergence (e.g., logarithmic in d = 2) can cause the
functional to be unbounded below (and, in fact, just having V < 0 a.e. in a neighborhood of
the origin leads to unphysical behavior). Finally, on physical grounds, we shall assume that
V is a symmetric function of its argument: V (x) = V (−x). We shall denote the class by V :

V = {V ∈ L1 s.t. V − ∈ L∞ and V symmetric with V (x) = 0 for |x| > a} (4)

where V − denotes the negative part of V and a < L. Additional technical assumptions will
be implemented as needed.

For the analysis of the functional Fθ , we shall denote by P the class of probability
densities on T

d
L (although it is clear that P is much larger than necessary). The uniform

density, will be denoted by ρ0:

ρ0 := L−d . (5)

The Fourier transform on T
d
L will be defined by

f̂k =
∫ L

0
f (x) e−ik·x dx, k ∈ 2π

L
Z

d;

the inverse Fourier transform is then

f (x) = 1

Ld

∑
k

f̂k eik·x, x ∈ T
d
L,

where the summation is extended over the lattice 2π
L

Z
d .

We denote the separate pieces of Fθ (·) by an S and E : Fθ (·) =: S(·) + 1
2θρ−1

0 E (·, ·). For
the second, we will often have occasion to regard this as the bilinear functional

E (ρa, ρb) :=
∫

T
d
L
×T

d
L

V (x − y)ρa(x)ρb(y) dx dy
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which is (usually) defined regardless of the signs or normalization of its arguments. Like-
wise, we will have some occasion to utilize the functional S for arguments that, albeit non-
negative, may not be normalized. For a legitimate non-negative, normalized ρ(x), the quan-
tities S(ρ) and 1

2θLd E (ρ,ρ) are (modulo signs) vaguely related to the entropy and energy
of the system when the equilibrium density is ρ; the two terms will be indicated by these
names.

1.2 Summary and Statement of Results

The central purpose of this note is the study of these systems as θ varies. Often enough these
systems go from a quiescent (gaseous) state where no minimizers of Fθ (·) exist save for the
uniform state to a state where this is no longer the minimizer and other minimizers are
prevalent. In short, a phase transition occurs the nature of which we shall partially elucidate.
The results proved and their relevant location are as follows:

In Sect. 2, the subject of phase transitions in the McK–V system will be discussed from
the ground up. First, in Sect. 2.1 (which may be omitted on a preliminary reading) we estab-
lish the existence of minimizers. This allows, in Sect. 2.2 a “thermodynamic” definition of
the entropic and energetic content of the system as a function of the interaction parameter θ

which in turn will clarify the definition and possible nature of the (lower) transition point. In
Sect. 2.3, necessary and sufficient conditions (on V ) are established for the occurrence of a
phase transition. The candidate transition point, much discussed in other works and here de-
noted by θ� is elucidated and it is shown that for θ < θ�, the uniform density is dynamically
stable. In Sect. 2.4, a concise definition of a (lower) critical transition point is provided.
First it is demonstrated (under the additional and presumably unnecessary assumption that
V ∈ L2) that if such a transition occurs, it must take place at θ = θ�. Then it is shown that
the features of a non-critical transition (where at least one of the criteria for a critical tran-
sition fails) are dramatically different. The subsection ends with a principal result of this
note. Namely under the majority of physically—or for that matter biologically—reasonable
circumstances, it is a non-critical transition which occurs in the McK–V system. Moreover
these occur at parameter value θT which is strictly smaller than θ�. Finally in Sect. 3, the
limiting behavior in large volume is discussed. In Sect. 3.1 it is shown that, for fixed inter-
action, the L → ∞ limit of the transition points always exist. But the limit may be trivial.
In Sect. 3.2, a criterion closely related to H-stability is introduced and it is shown that (with
the scalings featured in (1)–(3)) for stable potentials the transition points tend to a defini-
tive non-trivial limit. Conversely, in Sect. 3.3, the complementary—catastrophic—cases, are
investigated and it is shown that the transition values tend quickly to zero.

2 Phase Transitions

2.1 Minimizing Solutions

The starting point in our analysis is to establish, for all θ , the existence of stationary solu-
tions to (1) that minimize the free energy functional in (2). The existence of minimizers for
these sorts of problems has a history: In particular [4] discuss the existence of minimizers
for functionals of this form referring back to the works [12, 13]. In [6] there is an explicit
construction for a related problem and, recently [9], established the desired result by meth-
ods not dissimilar to those presently employed. We shall include a proof for completeness
which is succinct given the following:
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Lemma 2.1 Let Fθ (·) be as described. Then ∃B0 < ∞ such that for all ρ ∈ P the following
holds: if ‖ρ‖∞ > B0 then there is another ρ‡ ∈ P with ‖ρ‡‖∞ ≤ B0 for which

Fθ (ρ) > Fθ (ρ
‡).

Proof We start with the observation that for any ρ,

S(ρ) ≥ S(ρ0) = − logLd

and

1

2
θLd E (ρ,ρ) ≥ −1

2
θLdV0

where −V0 is the lower bound on V (x).
For B > 0 and ρ ∈ P, let BB(ρ) denote the set

BB(ρ) = {x ∈ T
d
L | ρ ≥ B}

and εB(ρ) the ρ-measure of BB :

εB =
∫

BB

ρdx.

We shall (rather arbitrarily) divide into the two cases of (ρ,B)’s for which εB(ρ) ≥ 1
2 and

εB(ρ) < 1
2 .

Obviously if εB(ρ) ≥ 1
2 then

S(ρ) ≥ 1

2
logB +

∫
B

c
B

ρ logρ.

The second term may be estimated from below by (1 − εB) log(1 − εB) − (1 − εB) log |Bc
B |

which can be bounded by quantities which do not depend on B . Since the energy term is
bounded below it is clear that for some B1 < ∞ if B > B1 Fθ (ρ) will exceed Fθ (ρ0). We
turn attention to the cases εB < 1

2 .
We write ρ = ρb +ρr where ρb is the restriction of ρ to the set BB and ρr is the rest. Our

claim is that if B is too large—and εB > 0—then

Fθ (ρ) > Fθ (ρr)

where ρr = (1 − εB)−1ρr is the normalized version of ρr .
We write, S(ρr) := ∫

T
d
L
ρr logρrdx, notwithstanding the fact that ρr is not normalized,

and observe (assuming B > 1 and εB > 0) that

S(ρ) ≥ S(ρr) + εB logB > S(ρr).

Since we might as well assume that Fθ (ρ) ≤ Fθ (ρ0) and the energetic components of both
of these quantities are bounded above and below this implies that for some s� < ∞

s� ≥ S(ρ) > S(ρr)

regardless of the particulars of ρ vis-à-vis B and εB . Similarly, we have (since E (ρ,ρ) <

E (ρ0, ρ0) and εB < 1/2) that E (ρr , ρr) ≤ E (ρ0, ρ0) + V0 =: e� < ∞.
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Now let us estimate Fθ (ρ) − Fθ (ρr). First

S(ρ) − S(ρr) ≥ εB logB − εB

1 − εB

S(ρr) + log(1 − εB)

≥ εB

[
logB − 1 + s�

1 − εB

]
(6)

where we have used the fact that log(1 − εB) ≥ − εB

1−εB
. As for the energetics, it is seen that

E (ρ,ρ) ≥ E (ρp,ρp) − θV0εB

while

E (ρp,ρp) = 1

(1 − εB)2
E (ρp,ρp),

so

E (ρ,ρ) − E (ρr , ρr) ≥
[−2εB + ε2

B

(1 − εB)2

]
E (ρr , ρr) ≥ −8εBe� (7)

where we have used εB < 1/2.
The combination of (6) and (7) shows that if B exceeds some (finite) B2 the density ρr

represents an “improvement” (unless εB = 0). Note that, conceivably, the improvement may
take values as large as twice B2. Nevertheless, the theorem is completed by declaring B0 =
max{B1,2B2,1} and using for ρ‡ the uniform or above described density as appropriate. �

Theorem 2.2 Let Fθ (ρ) be as described in (2) Then there exists a ρθ ≥ 0 ∈ P that mini-
mizes Fθ (·).

Proof Let (ρj ) denote a minimizing sequence for Fθ (·). Since, without loss of generality
ρj ∈ L1 ∩ L∞, we may place the ρj in L2 with ‖ρj‖2

2 < B0. Let ρ∞ denote a weak limit
of the sequence. By standard convexity arguments, limj→∞ S(ρj ) ≥ S(ρ∞) (where we have
used (ρj ) to denote the subsequence).

We claim that

lim
j→∞

E (ρj , ρj ) = E (ρ∞, ρ∞). (8)

This follows from some elementary Fourier analysis: Since V (x) ∈ L1, |V̂ (k)| → 0 as
k → ∞. Let wk0 = max|k|>|k0| |V̂ (k)| where here and throughout it is assumed that all k’s
are legitimate wave vectors for T

d
L. Then

|E (ρj , ρj ) − E (ρ∞, ρ∞)| ≤
∑

k:|k|≤|k0|
V̂ (k)[|ρ̂j (k)|2 − |ρ̂∞(k)|2] + 2B0wk0 . (9)

The first term tends to zero since for each individual k, ρ̂j (k) → ρ̂∞(k) and the second
term can be made as small as desired. Thus we may conclude that ρ∞ actually (globally)
minimizes the functional. �

On the basis of the above, we may define

Mθ := {ρ ∈ P | ρ minimizes Fθ (·)} (10)
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(where the above refers to global minimizers) with the assurance that ∀θ , Mθ �= ∅. As an
obvious corollary to Lemma 2.1, we have that any ρ ∈ Mθ is bounded above. Conversely,
we have uniform lower bounds (which, strictly speaking, do not play a rôle in later develop-
ments).

Proposition 2.3 Let ρ ∈ Mθ . Then ρ is bounded below strictly away from zero.

Proof We appeal directly to the Kirkwood–Monroe equation (3) from which it is clear that
pointwise upper and lower bounds on V � ρ are sufficient. Obviously V � ρ ≤ ‖ρ‖∞‖V ‖1.
Next, with more elaboration than may be necessary, let

Pa(ρ) = sup
y∈T

d
L

∫
|y−y′|≤a

ρ(y ′)dy ′ (11)

where it is recalled that a denotes the range of the interaction. Then V � ρ ≥ −PaV0. This
provides

ρ(x) ≥ exp−θLd [PaV0 + ‖ρ‖∞‖V ‖1] > 0. �

Remark It is anticipated that in physically reasonable (stable) cases, which will be discussed
in Sect. 3, both terms in the square bracket appearing in the previous equation are of the order
of L−d . However, in catastrophic cases, it seems that Pa(ρ) will indeed achieve values of
order unity independent of L for ρ ∈ Mθ .

2.2 Thermodynamics for the McK–V System

We may now separately define the energetic and entropic content of the system as a function
of the parameter θ ; these form the basis of a thermodynamic theory.

Definition We define

Eθ = inf
ρ∈Mθ

1

2
θρ−1

0 E (ρ,ρ) (12)

and

Sθ = inf
ρ∈Mθ

S(ρ). (13)

Furthermore, defining

Fθ = inf
ρ∈P

Fθ (ρ) (14)

we have, to within signs and constants, the energy, entropy and free energy of the system at
parameter value θ . It is noted that the first two do not always add up to the third.

Proposition 2.4 Consider the above defined thermodynamic functions. Then

(a) Sθ is non-decreasing
(b) Fθ − 1

2θρ−1
0 E (ρ0, ρ0) is non-increasing and continuous while

(c) θ−1Eθ and Eθ − 1
2θρ−1

0 E (ρ0, ρ0) are non-increasing.
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We remark that the subtractions are actually necessary: consider, e.g., the situation where
E (ρ0, ρ0) > 0 in the region of small values of θ where Fθ (·) is always minimized by ρ0.

Proof We shall start with the energetics. Let θ1, θ2 ≥ 0 and let ρθ1 ∈ Mθ1 and similarly
for ρθ2 . Then, using ρθ2 instead of ρθ1 we have that

Fθ1 ≤ Fθ1(ρθ2) = Fθ2(ρθ2) − 1

2
ρ−1

0 (θ2 − θ1)E (ρθ2 , ρθ2)

≤ Fθ2 − 1

2
(θ2 − θ1)ρ

−1
0 E (ρθ2 , ρθ2).

Similarly,

Fθ2 ≤ Fθ1 − 1

2
(θ1 − θ2)ρ

−1
0 E (ρθ1 , ρθ1)

so that (θ2 − θ1)E (ρθ2 , ρθ2) ≤ (θ2 − θ1)E (ρθ1 , ρθ1) which, if θ2 > θ1, certainly implies the
first of the items in (c). However, a bit more has been shown: The energetic content of any
ρθ1 ∈ Mθ1 is monotonically related to the energetic content of any ρθ2 ∈ Mθ2 .

This immediately establishes monotonicity of the entropy-term. Indeed, suppose that,
θ2 > θ1. Then, at θ = θ1 using a ρθ2 we have:

Fθ1 ≤ S(ρθ2) + 1

2
θ1ρ

−1
0 E (ρθ2 , ρθ2). (15)

The energy term is less than that associated with E (ρθ1 , ρθ1) and we arrive at

Fθ1 ≤ S(ρθ2) + 1

2
θ1ρ

−1
0 E (ρθ1 , ρθ1) = Fθ1 + S(ρθ2) − S(ρθ1). (16)

We again have that for any ρθ1 ∈ Mθ1 and ρθ2 ∈ Mθ2 , with θ1 < θ2,

S(ρθ1) ≤ S(ρθ2).

As for the claims about Fθ , continuity follows from the first two displays in this proof. For
the monotonicity, of Eθ − 1

2θρ−1
0 E (ρ0, ρ0), we first observe that for any θ and any ρθ ∈ Mθ

E (ρθ , ρθ ) ≤ E (ρ0, ρ0)

with equality only if ρθ = ρ0 a.e. Indeed, assuming that ρθ is not a.e. equal to ρ0, then
S(ρ0) < S(ρθ ) so ρθ could not possibly be a minimizer if the opposite of the above dis-
play were to hold. Then [E (ρθ , ρθ ) − E (ρ0, ρ0)] is non-positive and non-increasing so
θ [E (ρθ , ρθ ) − E (ρ0, ρ0)] is non-increasing.

The final claim is now proved by reiteration of the previous procedures with the subtrac-
tion in place:

Fθ2 − 1

2
θ2ρ

−1
0 E (ρ0, ρ0)

≤ S(ρθ1) + 1

2
θ2ρ

−1
0 E (ρθ1 , ρθ1) − 1

2
θ2ρ

−1
0 E (ρ0, ρ0)

= Fθ1 − 1

2
θ1ρ

−1
0 E (ρ0, ρ0) + 1

2
(θ2 − θ1)ρ

−1
0 [E (ρθ1 , ρθ1) − E (ρ0, ρ0)]
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where we have assumed θ2 > θ1. By the non-positivity of the quantity in the square brackets,
the stated monotonicity is established. �

With the above monotonicities in hand, the objects Sθ and Eθ can now be considered
well defined functions for all θ which are continuous for a.e. θ . However at points of dis-
continuity, it may be more useful to focus on the range of the function rather than its value at
the point. In particular Sθ is continuous iff Eθ is continuous while at points of discontinuity,
the density that minimizes S is the one that maximizes E and vice versa.

2.3 Phase Transitions in the McK–V Systems (1): The Point of Linear Stability

We start this subsection with some preliminary results—most of which have appeared else-
where in the literature (albeit by different methods)—concerning the single phase regime:
The regime where ρ0 is the unique minimizer of Fθ (·).

Proposition 2.5 Let V ∈ V be bounded i.e. |V | ≤ Vmax < ∞. Then for θLd sufficiently
small—less than [Vmax]−1—the functional Fθ (ρ) is convex.

Proof The functional Fθ (ρ) is finite on the set

Q = {ρ ∈ P | ρ logρ ∈ L1};

and there is no ambiguity to set Fθ (ρ) = +∞ for ρ ∈ P \ Q.
Then, it suffices to show that for any ρ1, ρ2 ∈ Q the function s �→ Fθ (ρs) where ρs =

ρ2s + ρ1(1 − s) is convex. It is straightforward to verify that Fθ (ρs) is twice differentiable
in s ∈ (0,1). Then, we compute

(
d

ds

)2

Fθ (ρs) =
∫

T
d
L

η2

ρs

dx + θLd

∫
T

d
L
×T

d
L

V (x − y)η(x)η(y) dx dy,

where η = ρ2 − ρ1. By Jensen’s inequality we have

∫
T

d
L

η2

ρs

dx =
∫

T
d
L

( η

ρs

)2
ρs dx ≥

(∫
T

d
L

∣∣∣∣ η

ρs

∣∣∣∣ρs dx

)2

=
(∫

T
d
L

|η|dx

)2

.

On the other hand, since |V (x − y)| ≤ Vmax we have

∣∣∣∣
∫

T
d
L
×T

d
L

V (x − y)η(x)η(y) dx dy

∣∣∣∣ ≤ Vmax

(∫
T

d
L

|η|dx

)2

.

This implies the inequality

(
d

ds

)2

Fθ (ρs) ≥ (1 − θLdVmax)

(∫
T

d
L

|η|dx

)2

> 0

if θLdVmax < 1. �

This immediately implies:
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Corollary 2.6 Under the conditions of Proposition 2.5, ρ0 = 1/Ld is the unique minimizer
of Fθ (ρ).

From the proof of the above Proposition we also obtain a corollary for potentials V which
are of positive type:

Definition A potential V is said to be of positive type if for all functions h in some suitable
class (e.g., L∞) ∫

T
d
L
×T

d
L

V (x − y)h(x)h(y) dx dy ≥ 0,

which is equivalent to the condition that ∀k

V̂ (k) ≥ 0.

We let V + ⊂ V denote the set of interactions that are of positive type and, for future refer-
ence, the complementary set by VN :

VN = V \ V +. (17)

Corollary 2.7 Let V ∈ V +. Then for all θ , the unique minimizer of Fθ (·) is the uniform
density ρ0.

Proof For ρ = ρ0(1 + η) in P, we consider fη(s) := Fθ (ρ0(1 + sη)). Calculating f ′′
η (s) as

in the proof of Proposition 2.5, the entropy term is still positive while the energy term yields

ρ0θ

∫
T

d
L
×T

d
L

V (x − y)η(x)η(y) dx dy ≥ 0.

Thus fη(s) is always convex and, for all η always minimized at s = 0.
Note that since all convexities are strict, any ρ ∈ P that is not a.e. equal to ρ0 admits,

for all θ ,

Fθ (ρ0) < Fθ (ρ). �

Next we show that V ∈ VN is also sufficient for the existence of a non-trivial phase.
The starting point is an elementary result which, strictly speaking is a corollary to Proposi-
tion 2.4.

Proposition 2.8 Let V ∈ V (but in VN for non-triviality) and suppose that at some θd < ∞
there is a ρθd

which is not a.e. equal to ρ0 such that

Fθd
(ρθd

) ≤ Fθd
(ρ0).

Then for all θ > θd , ρ0 is not the minimizer of Fθ (·).

Proof Indeed, since ρθd
is not a constant it must be the case that

S(ρθd
) > S(ρ0) (18)
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thence

E (ρθd
, ρθd

) < E (ρ0, ρ0). (19)

Thus for θ > θd , it is seen that

Fθ ≤ Fθd
(ρθd

) + 1

2
ρ−1

0 (θ − θd)E (ρθd
, ρθd

)

< Fθd
(ρθd

) + 1

2
ρ−1

0 (θ − θd)E (ρ0, ρ0) ≤ Fθ (ρ0)

which is the stated result. �

Thus beginning at θ = 0 there is a non-trivial interval of θ characterized by the property
that ρ0 is the unique minimizer for Fθ (·). The interval “terminates” at some value of θ -
possibly infinite. Assuming this value is finite, we may refer to it as the lower transition point
and, above this point, there are non-trivial minimizers of Fθ and non-trivial solutions to (3)
and (1). (We shall refrain from naming this point till the possible nature of the transition at
this point has been clarified.) It should be noted, by a variant of the above argument, that at
the lower transition point ρ0 is actually still a minimizer of the functional in (2).

We introduce some notation:

Definition For V ∈ VN , let k� denote a minimizing wave vector for V̂ (k):

V̂ (k�) ≤ V̂ (k) ∀k.

Note that V̂ (k�) < 0 by assumption. We define θ� = θ�(V ) via

θ� := |V̂ (k�)|−1.

We are finally ready for the following:

Proposition 2.9 ([13]; see also [4]) Let V ∈ VN . If θ > θ� then ∃ρ ∈ P, ρ �= ρ0 which
minimizes Fθ (·). In particular, for θ > θ�, ρ0 is no longer a minimizer of Fθ . Thus V ∈ VN

is the necessary and sufficient condition for the existence of a non-trivial phase.

Proof For θ > θ� we may use as a trial minimizing function

ρ = ρ0(1 + εη�)

where η� is a plane wave at wave number k� and is itself of order unity while ε is to be
regarded as a small parameter. Since all quantities are bounded, we may expand:

ρ0(1 + εη�) logρ0(1 + εη�)

= ρ0(1 + εη�) logρ0 + ρ0(1 + εη�)

(
εη� − 1

2
[εη�]2

)
+ o(ε2).

Since η� integrates to zero,

S(ρ) = S(ρ0) + 1

2
ε2ρ0

∫
|η�|2dx + o(ε2). (20)
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Meanwhile

1

2
θρ−1

0 E (ρ,ρ) = 1

2
θρ−1

0 E (ρ0, ρ0) + 1

2
ε2θρ0

∫
V (x − y)η�(x)η�(y) dx dx

= 1

2
θρ−1

0 E (ρ0, ρ0) + 1

2
ε2ρ0V̂ (k�)‖η�‖2

2[θ� + (θ − θ�)].

By definition of θ�,

−1

2
ε2‖η�‖2

2 = 1

2
θ�ε2V̂ (k�)‖η�‖2

2

so that

Fθ (ρ) = Fθ (ρ0) − 1

2
ε2ρ0‖η�‖2

2[|V̂ (k�)|](θ − θ�) + o(ε2)

which is strictly less than Fθ (ρ) for ε sufficiently small. (Here it is noted that the quantity
ρ0‖η�‖2

2 is itself of order unity.) By Proposition 2.8 the above is sufficient to establish the
statement of this proposition. �

Corollary 2.10 For V ∈ VN , θ�(V ) is the supremum of the set of quadratically stable para-
meter values for Fθ (ρ0). Furthermore, θ� marks the boundary for the linear stability of (1)
with solution ρ0. I.e. for θ < θ�, ρ0 is linearly stable while for θ > θ�, it is not.

Proof The first statement follows, in essence, from the above display. As for the dynamics,
the linearized version of (1) reads, for η = (ρ − ρ0)ρ

−1
0

∂η

∂t
= ∇2(η + θV � η). (21)

The linear operator ∇2[1 + θV �](·) has, by the definition of θ�, a strictly negative spectrum
if and only if θ < θ�. The second statement of this corollary therefore follows from the
definition of linear order stability. �

While the above statement does not necessarily have a direct implication on dynamical
stability of ρ0 for the nonlinear evolution with θ < θ�, such a result is in fact true. Here we
find that ρ0 in that case has a non-trivial basin of stability.

Theorem 2.11 Under the regularity assumption

G = 1

Ld

∑
k

|V̂ (k)‖k| < ∞

there is a non-trivial basin of attraction for ρ0 which contains all Borel measures that are
sufficiently close to ρ0 in the total variation distance. In particular, at positive times, any such
perturbing measure regularizes and, for any particular Sobolev norm, the density converges
to ρ0 exponentially fast in this norm. The stated results hold uniformly in L for the rate of
convergence and the size of the perturbation relative to ρ0.

Remark The regularity assumption on V is for convenience; presumably a stronger result
is available. In particular, it is not hard to see that with greater regularity of the perturbing
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density, regularity assumptions on the interaction potential can be relaxed. Moreover, with
greater regularity assumptions on V , even more singular objects than Borel measures are
contained in the basin of attraction. It is noted that the condition on V is, in essence inde-
pendent of L. I.e., for fixed V (x) defined on R

d with V̂ (k) denoting the Fourier transform
with k ∈ R

d , the above amounts to the condition that
∫

Rd

|k|V̂ (k)dk < ∞.

Proof We write ρ = ρ0(1 + η) with η measure valued. Let η̂k(t) denote the dynamically
evolving kth Fourier mode. We shall assume that in the initial state, each mode is small—
which is certainly implied by the smallness of the total variation distance. In particular, we
will assume that at t = 0 each η̂k(0) is bounded by an ε0 which satisfies the condition that
for all k,

2|k|θGε0 < λ(k) (22)

where λ(k) = k2(1 + θV̂ (k)) is the decay rate for the kth mode in the linear approximation.
It is emphasized that λ(k) > ck2 with c > 0 if θ < θ�.

The η̂k(t) satisfy the formal equation

∂η̂k(t)

∂t
= −λ(k)η̂k(t) − 1

Ld
θk ·

∑
k′

k′V̂ (k′)η̂k′(t)η̂k′−k(t) (23)

where, it is emphasized, all other factors of volume have canceled out. It is noted that
(23) may certainly be used to formulate dynamics via an iterative scheme—provided that
control is maintained under reiteration. Thus we may consider the sequence (η̂

(�)
k (t) | � =

0,1,2, . . . ) where η̂
(0)
k (t) ≡ η̂k(0) and η̂

(�+1)
k (t) is defined as the solution of (23) with η̂

(�)
k (t)

the argument of the non-linear kernel.
The form in which we will use equation (23) is with moduli; we have

∂|η̂k(t)|
∂t

= −λ(k)|η̂k(t)| − θ

2

1

Ld

[
η̂k(t)

|η̂k(t)| k ·
∑
k′

k′V̂ (k′)η̂k′(t)η̂k′−k(t) + c.c.

]
.

The first claim is that for ε0 satisfying the condition in (22) then for all k and t and �,

|η(�)
k (t)| ≤ ε0.

Indeed, this is certainly true for η
(0)
k so, inductively,

∂|η(�)
k (t)|
∂t

≤ −λ(k)|η(�)
k (t)| + θε2

0G|k|. (24)

First, let us consider modes that satisfy

|ηk(0)| > |k|θGε2
0

λ(k)
. (25)

Such modes will decrease in magnitude—at least till |ηk(t)| reaches the right side of the
inequality in (25) whereupon they may “stick”. But by assumption, these modes started out
smaller than ε0. On the other hand, modes with initial conditions that satisfy the opposite
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inequality of (25) may actually grow till the inequality saturates but this does not get them
past ε0 since for all k,

ε0 >
Gθε2

0|k|
λ(k)

(26)

by hypothesis. (The factor of two does not yet come into play.)
Contraction of the sequence follows an identical argument which does employ the factor

of 2. We define ��
k(t) = |η̂(�+1) − η̂(�)| and ��

� = supk,t �
�
k(t). It is found that ∀k, t ,

��
k(t) ≤ 2��−1

� ε0|k|θG

λ(k)
< (1 − δ)��−1

� (27)

for some δ > 0 by (22). Thus (23) indeed defines our dynamics and we may perform manip-
ulations on its basis without further discussion. Our next task will be to get the ηk uniformly
decaying.

By repeating the steps of (24)–(26) it is clear that for any e0 > ε0, there is a time t0 such
that for all t > t0,

|ηk(t)| < Gθe2
0|k|

λ(k)
. (28)

Incidentally, we have now placed η in some reasonable Sobolev space—but this is not yet
relevant. For the moment, the pertinent observation is that there is a maximum sized mode
which is to be found at a finite value of k (which may, of course, change from time to time).
Thus, for each t > t0, let β0 denote the modulus of the maximum mode and k denote the
wave vector that maximizes. Then, for all t > t0 we have

∂β0

∂t
≤ −λ(k)β0 + Gθ |k|β0ε0 ≤ −1

2
λminβ0 (29)

where λmin is the minimum of λ(k) (which is positive for θ < θ�). We conclude that all the
ηk(t) tends to zero exponentially fast with rate at least as large as 1

2 λmin.
We use a small variant of this argument to show that for any n, the maximum of

|k|n|ηk(t)| (exists and) decays with a rate at least as large as 1
2 λmin. Focusing on n ≥ 1 let us

assume that at the n − 1st stage of the argument, we have a tn−1 such that for all t > tn−1,

β
[n−1]
k (t) ≤ θ |k|G

λ(k)
δn−12n−1 (30)

here β
[n]
k (t) := |k|n|ηk(t)| and the quantity δn is specified as follows: Multiplying both sides

by |k|, since λ ≥ ck2 this puts a uniform bound on β
[n]
k (t) which is stipulated to be less than

one.
We now write

∂β
[n]
k

∂t
≤ −λ(k)β

[n]
k + 1

Ld
2n−1|k|θ

∑
k′

β
[n]
k′ |ηk′−k‖V̂ (k′)k′|

+ 1

Ld
2n−1|k|θ

∑
k′

β
[n]
k′−k

|ηk′ ‖V̂ (k′)k′|
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where we have used |k|n = |k′ + k − k′|n ≤ 2n−1[|k|n + |k − k′|n]. We now wait till a time
t ′n when each |ηt (k)| is less then some εn which is small and to be specified. Summing, the
estimates,

∂β
[n]
k

∂t
≤ −λ(k)β

[n]
k + 2nθ |k|εn (31)

and we now wait till a time tn > t ′n so that, similar to the previous portion of the argument,

β
[n]
k (t) ≤ θ |k|G

λ(k)
2nδn (32)

for any δn > εn. Obviously this δn will be tailored to satisfy the requirements to propagate the
next iterate of the argument—and so we stipulate. But in addition we require that 2nδn < ε0.

The proof is completed by noting that (32) allows us to conclude that the supremum of
β

[n]
k is to be found at a finite k and the rest of the argument proceeds as described in the

vicinity of (29). The desired result has been proved. �

2.4 Phase Transitions in the McK–V Systems (2): First Order Transitions

In order to investigate the possibility of continuous/discontinuous transitions in this model,
an appropriate definition must be provided.

Definition Consider the McK–V functional Fθ with V ∈ VN . We define θc to be a (lower)
critical point if the following criteria are satisfied:

• For θ ≤ θc , ρ0 is the unique minimizer of Fθ (·).
• For θ > θc , ∃ρθ �= ρ0 which minimizes Fθ (·), (which necessarily implies that ρ0 is no

longer a minimizer of Fθ (·)).
• If (ρθ | θ > θc) is any family of such minimizers then

lim sup
θ↓θc

‖ρ0 − ρθ‖1 = 0.

Remark We have called this a lower critical transition since, conceivably there could be
later (in θ ) transitions of this type with non-trivial solutions “bifurcating” from preexisting
non-trivial solutions. This would be difficult to detect—analytically or numerically—since
the non-trivial solutions are anyway evolving with θ . Such a phenomenon would, presum-
ably, have to be tied to non-analyticity in E (·) or S(·) notwithstanding their continuity. By
contrast (cf. Proposition 2.13 below) for the other possible type of transition, these objects
are generically discontinuous. In any case, the foremost possible phase transition in these
systems is the lower one and will be the focus of all our attention.

Any (lower) phase transition not satisfying the above three items will be called a discon-
tinuous transition and we will denote such a transition point by θT. As we shall see later, in
Proposition 2.13, for a discontinuous transition the second item will hold while in the first
item, we must replace θ ≤ θc with θ < θT. But most pertinently, the third item fails in its
entirety. Thus, at such a transition point, a new minimizing solution of (1) appears which, for
θ = θT, is degenerate (in the sense of minimizing Fθ (·)) with ρ0 but is markedly separated
from ρ0.

Our first result characterizes the critical transitions:
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Proposition 2.12 Let V ∈ VN ∩ L2 and suppose a (lower) critical phase transition as de-
scribed above occurs in the McK–V system at some θc . Then, necessarily, θc = θ�.

Proof The trivial cases θ� = 0 or θ� = ∞ are easily dispensed with. Assuming otherwise
for θ�, it is obvious that a (lower) critical point θc could not exceed θ� since non-trivial
minimizers already exist at any θ > θ�. We shall therefore work with θ < θ� and write
θ = θ� − δ where δ > 0.

As a preliminary, it should be noted that while the third item in the definition of the θc

necessarily reflects the natural L1-norm, it will be more convenient to work with L2 and L∞.
We will show that, as far as ρθ −ρ0 is concerned, these are controlled by the L1-norm. First,
for expositional ease, let us define

ηθ := ρθ − ρ0

ρ0
. (33)

Starting with L2, recall from the “obvious corollary” to Lemma 2.1 that since ρθ is a mini-
mizer of Fθ (·) it is bounded uniformly (enough) in θ and thence ηθ is similarly bounded—
say by ω. Then

‖ηθ‖2
2 ≤ ‖ηθ‖1‖ηθ‖∞ ≤ ω‖ηθ‖1. (34)

For the moment, we can only employ the outer inequality but at least we now have that
‖ηθ‖2 is “small”. Next we use the fact that ρθ satisfies the Kirkwood–Monroe equation, (3).
As is not hard to see, in the language of ηθ this reads

1 + ηθ (x) = e−[θV �ηθ ](x)∫
e−θV �ηθ ρ0dx

. (35)

Now, for a.e. x

|[V � ηθ ](x)| =
∣∣∣∣
∫

T
d
L

V (x − y)ηθ (y) dy

∣∣∣∣ ≤ ‖V ‖2‖ηθ‖2 (36)

thence, if ηθ (x) > 0,

ηθ (x) ≤ (e2θ‖V ‖2‖ηθ ‖2 − 1) (37)

while if ηθ (x) < 0,

ηθ (x) ≥ (e−2θ‖V ‖2‖ηθ ‖2 − 1). (38)

Thus, for ‖ηθ‖2 sufficiently small (which we know happens as θ ↓ θc from (34)) there is a
K—which is uniform in θ near θc and of order unity—such that ‖ηθ‖∞ < K‖ηθ‖2. We may
now exploit the middle inequality in (34) and declare that in the vicinity of the purported θc

all norms of any ηθ are comparably small.
Now, suppose that θ � θc . We repeat the calculations performed in Proposition 2.9 with

the result that

Fθ (ρθ ) = S(ρ0) + 1

2
θLd E (ρ0, ρ0) + 1

2
ρ0

[‖ηθ‖2
2 + θ E (ηθ , ηθ )

] + o(‖ηθ‖2
2). (39)

The term in the square brackets is strictly positive and at least of the order ‖ηθ‖2
2 if θ ≈ θc =

θ� − δ with δ > 0. Evidently, as indicated, the only possibility for a continuous transition is
at θ�. �
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The alternative to a critical transition is a discontinuous transition which is also called a
first order transition. For such transitions, the following holds:

Proposition 2.13 If V ∈ VN and at least one of the criteria given in the definition of a
critical point at the beginning of this subsection fails then there is a transition at some θT

which is characterized by the following:
∃ρθT �= ρ0 such that

• FθT(ρθT) = FθT(ρ0) = FθT

• E (ρθT , ρθT) < E (ρ0, ρ0)

• S(ρθT) > S(ρ0) (and thus both Eθ and Sθ are discontinuous at θ = θT).

Since two distinct minimizers exist at the same value of θ , such a point may also be
described as a point of phase coexistence.

Proof At θ > θT we have for ηθ = (ρθ − ρ0)ρ
−1
0

lim sup
θ↓θT

‖ηθ‖1 �= 0. (40)

Since, in these matters, all norms are more or less equivalent, we will take the above state-
ment in L2 and extract a weakly convergent sequence which we will still denote by ηθ . Let
us first rule out the possibility that ηθ ⇀ 0. Indeed, supposing this to be the case, we would
certainly have

lim
θ→θT

E (ηθ , ηθ ) = 0,

e.g., as discussed in the proof of Theorem 2.2. However, we have that all along the subse-
quence, ‖ηθ‖2 ≥ hT for some hT > 0 and, moreover, for some b < ∞, ‖ηθ‖∞ < b. Thence,
by the convexity properties of the S -term we have that for s small,

S(ρθ ) ≥ S(ρ0) + 1

2
s2‖ηθ‖2

2 + o(s2).

This indicates that

lim sup
θ↓θT

Fθ > FθT

in violation of the stated continuity result.
Thus, in our sequence ηθ converges to a non-trivial limit which we denote (optimistically)

by ηθT . On the energetic side, we still have

lim
θ→θT

E (ηθ , ηθ ) = E (ηθT , ηθT)

and, again, by convexity properties, S(ρ0(1 + ηθT)) does not exceed any limit of S(ρθ ) as
θ ↓ θT. Evidently this ηθT provides a genuine minimizer for FθT(·) which we now denote
by ρθT .

By hypothesis (of a lower transition) the uniform solution is a minimizer of Fθ up to
θ = θT and thus by continuity is also a minimizer at θT: FθT(ρ0) = FθT(ρθT) (see Propo-
sition 2.4). Moreover, we reiterate, S(ρ0) < S(ρθT) necessarily implying E (ρθT , ρθT) <

E (ρ0, ρ0). All of the stated results have now been proven. �
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The two preceding results—concerning (i) the purported critical behavior at θ = θ� and
(ii) the characteristics of systems with purported non-critical lower transitions—allow for
the following:

Theorem 2.14 Consider, in dimension d ≥ 2 a fixed V ∈ VN which is isotropic. Then, if
the volume is sufficiently large there is never a (lower) critical transition. In particular
under the above stated conditions there is a discontinuous transition at some θT satisfying
θT < θ� where there is phase coexistence and various other properties all of which has been
described in the context of Proposition 2.13.

Proof We will consider disturbances of the form

ρ = ρ0(1 + εη)

with η(x) a function (with L∞-norm) of order unity which integrates to zero, and ε a small
(pure) number of order unity. Then

S(ρ) = S(ρ0) +
∫

T
d
L

ρ0

[
1

2
ε2η2 − 1

6
ε3η3

]
dx + o(ε3) (41)

where it is slightly important to observe that o(ε3) is independent of the volume. Of course
the above expansion also contained a linear odd term which vanishes since η has zero mean.
Similarly, we have E (ρ,ρ) − E (ρ0, ρ0) = ε2 E (ρ0η,ρ0η).

We set θ = θ� where, as we recall, the minimizing wave vector satisfies −V̂ (k�)θ� = 1.
Now, we invoke the assumption that V (x) depends only on |x|,—so that V̂ (k) depends only
on |k|. Then, under the auspices of continuous wave numbers (“the infinite volume limit”)
we could find k̃1 and k̃2 with |k�| = |k̃1| = |k̃2| necessarily satisfying

V̂ (k�) = V̂ (k̃1) = V̂ (k̃2) (42)

such that

k� + k̃1 + k̃2 = 0. (43)

Thus, in finite volume, we can find approximating k1 ≈ k̃1 and k2 ≈ k̃2 with, e.g., |k1 − k̃1| =
O(L−1) that are appropriate to T

d
L such that (43) is true and (42) is approximately true. We

now use

η = η� + η1 + η2

with η1 and η2 plane waves at wavenumbers k1 and k2 respectively. We have, e.g.,

V̂ (k1)θ
�ρ0‖η1‖2

2 + ρ0‖η1‖2
2 ≤ σ(L) (44)

with σ → 0 as L → ∞. (We reiterate that each term in the above display is separately of
order unity.) Thus, we may declare that, essentially, up through second order Fθ� (ρ0(1+εη))

equals Fθ� (ρ0). But now, since k� + k̃1 + k̃2 = 0, then unlike a plane wave which, even cubed,
would integrate to zero, it is in general the case that

∫
T

d
L

(η3)dx �= 0. (45)
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Moreover by adjusting the phases of the constituents, the corresponding term in the expan-
sion of Fθ� (ρ) can be made to be negative.

It is thus evident that for all L large enough, ρ0 is not the global minimizer for Fθ� (·).
Thus, by the continuity result of Proposition 2.8, ρ0 is not the global minimizer for a range
of θ which lies strictly below θ� (although by Theorem 2.11, it is evidently still a local min-
imum). Thus the transition takes place at some θT < θ� and is (therefore) not continuous. �

We conclude this section with an (abbreviated) spectrum of remarks.

Remark For the vast majority of physically motivated single component systems, the above
theorem precludes, in the general context, the possibility of continuous transitions. (Cf. the
third remark in this sequence for additional discussion.) This is in apparent contradiction
with a number of results for these system—some of which receive additional discussion
in the subsequent remark—the most pertinent of which have been the subject of [6] and,
recently, discussed in [4]. In these works, a continuous transition was indeed found at the
analog of θ�. The important distinction between the present work and [4, 6] is in the na-
ture of the entropy functional that was employed. Indeed, therein the prototypical entropy
functional was of the form

A 0(ρ) =
∫

[ρ logρ + (1 − ρ) log(1 − ρ)]dx. (46)

Thus, in the expansion which uses ρ = ρ0(1 + η), all the odd terms in η vanish identically;
from this perspective, A 0(ρ) is simply the symmetrized version of S(ρ). Of course this pre-
empts the term(s) driving the conclusion of Theorem 2.14 and thus allows for a continuous
transition at θ = θ�.

However, A 0(ρ) is not a natural entropy form for a one-component system and, as argued
in [4], is in fact an effective entropy term for a two component Ising-type system. The first
principles version of these sorts of Ising systems is currently a subject of intensive investi-
gation; e.g. the works [6] and [11] and some work in progress by R. Esposito and R. Marra
in conjunction with the authors. The present set of models under consideration appear to
undergo a transition that is, at least sometimes, “weakly first-order” at some θT � θ�. How-
ever, it may well be the case that the consideration of more general interactions leads, in the
two–component cases, to generic circumstances where there are continuous transitions.

Remark In a variety of contexts, e.g. [14, 25, 31], various workers have claimed that non-
trivial solutions to (3) appear—continuously or otherwise—only after θ ≥ θ�. Since this at-
titude seems prevalent, perhaps some comments are in order. As is typical—by definition—
for discontinuous transitions the new minimizing solutions or states are not continuously
connected to the old. This and, especially, Theorem 2.11 accounts for some of the difficul-
ties attempting to generate stable solutions dynamically as described in [25]. It may, perhaps,
prove useful to attempt to generate the stable solutions by a nucleation technique (e.g., based
on the solution for small systems) at parameter values below θ� where, perhaps, fewer inter-
fering solutions exist. Indeed, the basin of attraction provided by Theorem 2.11 may itself,
for L � 1, be arguably small from a certain perspective.

The results in [14] and [31] both rely on standard fixed point/bifurcation analyses. In [14],
it was simply assumed that the non-trivial solutions were periodic with period k�. Of course,
as was noted in [14] the Kirkwood–Monroe equation is “closed” under periodic functions
with any period. (By this it is meant that if we write (3) in the form ρ = �(ρ) then, if σ is
periodic so is �(σ) with the same period.) Thus, using this equation as the basis for a fixed
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point argument (with the help of the Krasnoselskii fixed point theorem) one is able to man-
ufacture a solution of sorts. Moreover, this scheme indeed requires θ ≥ θ� for the solution
of period 2π[k�]−1 to be non-trivial. However it is also clear that these solutions have no
stability under the dynamics of (1) and, even, the discrete time dynamics which produced
these solutions in the first place. In particular it is almost certain that these solutions do not
minimize the free energy functional. (Although, no doubt, they have a lower free energy than
the uniform solution.) Indeed while it is not impossible that the stable solutions appearing
at θ = θT are periodic with some period, as is typical in non-linear phenomena, there is no
reason for the period to exactly match that of the unstable mode which appears at θ = θ�.

Finally, we wish to comment on the careful analysis in [31]. Here, standard results in the
theory of bifurcations were brought to bear under the explicitly stated assumption that the
relevant hypotheses for the theorem actually apply. In this context, the most important of
these ingredients is that the kernel and co-kernel of the linear operator are one-dimensional.
Under the required symmetry V (x − y) = V (y − x)—without which the model does not
make sense as a description of identical interacting constituents—this condition is obviously
violated. And it may or may not be a “technical” violation, cf. the next remark. Notwith-
standing, even if the conditions for the bifurcation results are satisfied, provided that V̂ (k)

is continuous, there are always modes near k� which are nearly unstable at θ = θ�. Thus any
basin of stability and domain of validity will be vanishingly small with increasing volume.

Remark It is remarked that full isotropy of V (x) and/or d > 1 is not strictly required. The
condition used in the preceding proof was the existence of three wave vectors adding up
to zero each of which (nearly) minimize V̂ (k). Obviously this can be achieved in d > 1 if
V (x) has an appropriate 3-fold symmetry. Moreover, a detailed analysis will yield alterna-
tive sufficient conditions: (I) If V̂ (0) (assumed positive) is not too large. (II) if V̂ (2k�) is
negative and, in magnitude, an appreciable fraction of V̂ (k�); etc. However, full isotropy is
not an unreasonable assumption for fluid systems—as well as other applications—and, in
fact, d > 1 is required for actual statistical mechanics systems with short-range interactions
to exhibit changes of state. Thus we are content with the present result and will not pursue
these alternative specialized circumstances.

Remark In the language of equilibrium statistical mechanics, θT is, of course, classified as
a point of first order transition while the point θ� is not recognized. From the perspective
of dynamical systems, θ� is a subcritical pitchfork bifurcation. It may be presumed that
solutions of the type which minimize at and above θT are present even before θT. The point
at which they first appear—temporarily denoted by θR—would then represent a saddle node
bifurcation while, from this perspective, the point θT is not recognized.

3 The Large Volume Limit

In this final section, we shall investigate the behavior of our systems—with fixed V (x)—as
L tends to infinity. The upshot, roughly speaking, is that for interaction potentials which
are appropriate for physical problems the energy/temperature scaling is viable and not so
otherwise. Since the L-dependence of these problems will now be our focus, all relevant
quantities will adorned with superscript [L].
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3.1 The Limit of the Transition Points

If the interaction violates the conditions of Theorem 2.14 and has a (sequence of) continuous
transitions then, by Proposition 2.12, these all take place at the relevant θ� which is only
weakly dependent on system size. Thus the interesting questions concern the discontinuous
transitions. Notwithstanding, the forthcoming makes no explicit use of the discontinuity
other than the convenience of label.

Theorem 3.1 For fixed V ∈ VN consider the system on T
d
L with discontinuous transition

at θ
[L]
T . Then these transition points tend to a definitive limit.

Proof We shall start with the statement that for any L and any integer n,

θ
[L]
T ≥ θ

[nL]
T . (47)

To see this, we patch together nd copies of a non-trivial minimizer of T
d
L at θ

[L]
T to cover

T
d
nL (which is facilitated by the fact that, anyway, these solutions are periodic). First, letting

v =
∫

Rd

V (x) dx (48)

it is noted that for any La ,

F [La ]
θ (ρ

[La ]
0 ) = − logLd

a + 1

2
θ v. (49)

Now let L denote any scale with transition temperature θL
T and let ρ[L]

� denote the non-trivial
minimizer for T

d
L at this value of the parameter. Let ρ̃[nL]

� denote the periodic extension of
this function to T

d
nL rescaled by a factor of n−d so that it is properly normalized. It is seen

that

S nL(ρ̃[nL]
� ) =

∫
T

d
nL

ρ̃[nL]
� log ρ̃[nL]

� dx

= − lognd + nd × 1

nd

∫
T

d
L

ρ[L]
� logρ[L]

� dx

= − lognd + S [L](ρ[L]
� ).

Making use of the underlying periodic structure, we have that for fixed L-periodic g(y),
the integral

∫
T

d
nL

V (x − y)g(y)dy is equal to the periodic extension of the corresponding

integral on T
d
L. Thus, the energetics will come out the same. In particular, if we define

Ñ(x) =
∫

T
d
nL

ρ̃[nL]
� (y)V (x − y)[nL]d dy (50)

then Ñ is the periodic extension of the function N(x) given by

N(x) =
∫

T
d
L

ρ[L]
� (y)V (x − y)Ld dy (51)
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(Note that in (50)–(51) the factors of (nL)d and Ld have been brought inside so that the
integrands are both ostensibly of order unity and therefore the “same” function.)

Thus, again,

1

2
θ [nL]d E [nL](ρ̃[nL]

� , ρ̃[nL]
� ) = 1

2
θnd × 1

nd
Ld E [L](ρ[L]

� , ρ[L]
� ). (52)

Altogether, we find

F [nL]
θ (ρ̃[nL]

� ) = − lognd + F
[L]
θ (ρ[L]

� ) (53)

while, from (49) with La = nL

F [nL]
θ (ρnL

0 ) = − lognd + F
[L]
θ (ρ

[L]
0 ). (54)

From the above two equations, we may conclude that θ
[L]
T ≥ θ

[nL]
T .

Now consider L, K with K � L when K is not an integer multiple of L. We will use
almost exactly the above argument except that we will acquire an error due to “boundary
terms”. Let us find n such that

nL < K < (n + 1)L. (55)

We shall treat T
d
K like the hypercube [0,K]d which is divided into nd hypercubes of scale

L which occupy [0, nL]d . For future reference, we refer to boxes that share a face with the
region T

d
K \ [0, nL]d as boundary boxes. It is noted that there are B(n,d) = nd − (n − 2)d

such boxes. In the region [0, nL]d , we define, similar to before, the density ρ̃[K]
� which is the

rescaled periodic extension of ρ[L]
� , the non-trivial density which minimizes the free energy

at θ
[L]
T on T

d
L. In the complimentary region, we set ρ̃[K]

� to zero.
The entropic calculation proceeds exactly as before with the same result namely

− lognd + S [L](ρ[L]
� ). However, for the energy integrals, we cannot simply use (52) because,

e.g., if both x and y are in boundary cubes (on opposite sides) the formula may be in error
because V (x − y) no longer “reaches around”. However for present purposes, it is sufficient
to use the results of (52) and subtract the maximum possible gain from these cubes—which
would be −V0. The result is

Kd E (ρ̃[K]
� , ρ̃[K]

� ) ≤
(

K

nL

)d

[Ld E (ρ[L]
� , ρ[L]

� )]

+ V0 · [nL]d
∫

H(n,d)2
ρ̃[K]

� (x)ρ̃[K]
� (y) dx dy

where H(n, d) is standing notation for the above described region of boundary cubes. Note
that the ρ̃[K]

� ’s are normalized to n−d in each such cube and the order of B(n,d) is nd−1. As
a result,

Kd E (ρ̃[K]
� , ρ̃[K]

� ) ≤ [Ld E (ρ[L]
� , ρ[L]

� )](1 + O(K/L)). (56)

Consequently, for any ε > 0,

θ
[L]
T + ε > θ

[K]
T (57)

for all K sufficiently large which implies the desired result. �
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3.2 Stable Behavior

Since θ
[L]
T tends to a definitive limit which (for V ∈ VN ) is not infinite, it is important to

establish the criterion for when this limit is not zero. As it turns out, the correct condition is
closely related to thermodynamic stability.

For two body interactions, the condition of H-stability (see [27], p. 34) is as follows:
∃b > −∞ such that for any N points, x1, . . . , xN in R

d ,

∑
i �=j

V (xi − xj ) ≥ −bN. (58)

This condition is regarded as necessary and sufficient for the existence of thermodynamics—
although the early proofs usually assume continuity properties of the interaction. Provided
that V is bounded and continuous, H-stability is equivalent to the condition that for all
probability measures described by a density ρ(x),

∫
Rd×Rd

V (x − y)ρ(x)ρ(y) dx dy ≥ 0 (59)

(cf. [27]) as is easily seen by utilizing sums of point masses to approximate probability
measures. This will be our working hypotheses for the benefit of the next result along with
the technical assumption that V is bounded:

Definition An interaction V ∈ V is said to satisfy condition-K if |V (x)| ≤ Vmax < ∞ for
all x ∈ R

d and if for all L sufficiently large, the inequality
∫

T
d
L
×T

d
L

V (x − y)ρ(x)ρ(y) dx dy ≥ 0 (60)

holds for all ρ ∈ P[L].

The principal result of this section is as follows:

Theorem 3.2 Let V ∈ VN denote an interaction that satisfies condition-K and has (for all
L sufficiently large) discontinuous lower transitions at θ

[L]
T on T

d
L. Then the θ

[L]
T tends to a

limit that is strictly positive.

Proof For convenience in the up and coming we shall streamline notation—e.g., revert to
the omission of all L’s in the superscripts, etc. We start by assuming θ ≥ θT and write, for
this value of θ , a non-trivial minimizer and its deviation

ρ = ρ0(1 + η).

Further, we define the positive and negative parts of η as η+ and, η− respectively and, finally,

h = ‖ρ0η‖1.

The aim is to show that if θ is small than, regardless of L, h must be zero.
The first step will be an estimate on the free energetics. We have

0 ≤ Fθ (ρ0) − Fθ (ρ) = S(ρ0) − S(ρ) + 1

2
θLd [E (ρ0, ρ0) − E (ρ,ρ)]. (61)
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As has been stated before, we have 1
2θLd E (ρ0, ρ0) = 1

2θv while

1

2
θLd E (ρ,ρ) = 1

2
θv + 1

2
θLd E (ρ0η,ρ0η). (62)

Let us decompose:

1

2
θLd E (ρ0η,ρ0η) = 1

2
θLd [E (ρ0η

+, ρ0η
+) + E (ρ0η

−, ρ0η
−)

− 2E (ρ0η
+, ρ0η

−)].
The first two terms are positive by the hypothesis that V satisfies the condition-K thus

1

2
θLd E (ρ,ρ) ≥ 1

2
θv − θ

∫
T

d
L
×T

d
L

V (x − y)η−(y)ρ0η
+(x) dx dy

≥ 1

2
θv − 1

2
θ‖V ‖1h

where we have used ‖η−‖∞ ≤ 1 and ‖ρ0η
+‖1 = 1

2 h.
Putting these together we have

S(ρ) − S(ρ0) ≤ 1

2
θLd [E (ρ0, ρ0) − E (ρ,ρ)] ≤ 1

2
θ‖V ‖1h. (63)

Incidentally we may use the lower bound (see, [33], p. 271) S(ρ) − S(ρ0) ≥ 1
2h2 to learn

that the assumption that θ is “small” necessarily implies that h is small but the particulars
of this bound does not play a major rôle.

Now, let us write the mean-field equation, (3), in a form useful for the present purposes:

logρ + θLd

∫
T

d
L

V (x − y)ρ(y) dy = CKM (64)

with CKM a constant that we are now prepared to “evaluate”

CKM = S(ρ) + θLd E (ρ,ρ). (65)

Expressing (64)–(65) for the benefit of η we have

logρ0 + log(1 + η) + θv + θ

∫
T

d
L

V (x − y)η(y)dy = S(ρ) + θLd E (ρ,ρ) (66)

so

log(1 + η) + θ

∫
T

d
L

V (x − y)η(y) dy

=: −κ = Fθ (ρ) − Fθ (ρ0) + 1

2
θLd [E (ρ,ρ) − E (ρ0, ρ0)]

where it is noted that the sign of κ is pertinent. Indeed by the display just prior to (63) we
have

0 ≤ κ ≤ 1

2
θ‖V ‖1h. (67)
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(Thus, in addition, κ is small.) Note that all the above holds formally even if η = 0 so in the
future, we need not insert provisos.

For use in the remainder of this proof, we shall divide T
d
L into disjoint cubes

C1, . . .Cj , . . . (half open/closed etc.) of diameter a. Since we are only pursuing the limit
of θ

[L]
T , it may just as well be assumed that 2a divides L. We use the notation

‖f ‖L1(Cj ) :=
∫

Cj

|f (x)|dx

and similarly for other local norms.
Our first substantive claim is as follows:

Let ε denote a small number which is of order unity independent of L (the nature of which
is not so important and will, to some extent, be clarified below) and suppose that for all j ,

‖η‖L1(Cj ) ≤ ε

θ
. (68)

Then, for all θ is sufficiently small, for all L under discussion, we have that η ≡ 0.
To see this we let x ∈ Cj be in the support of η+ so, ostensibly, we have

1 + η+(x) = e−κe
−θ

∫
T

d
L
V (x−y)η(y)dy

. (69)

However, due to the finite range of V , the integration actually takes place on only the cubes
in the immediate vicinity of Cj so that

1 + η+(x) ≤ exp

[
θVmax

∑
j ′∼j

‖η‖L1(Cj ′ )

]
≤ eεVmaxD1 (70)

where j ′ ∼ j means that Cj ′ ∩Cj �= ∅ and D1 = D1(d) is the number of j ′ such that j ′ ∼ j .
This implies an L∞-bound on η+ which is (a small number) of order unity. We run a similar
argument for η−—only now we have to contend with κ :

1 − η− ≥ e−κe−εVmaxD1 (71)

i.e.,

η− ≤ κ + εVmaxD1. (72)

Thus we have an L∞ bound on the full η which implies, at this stage—since h and θ are
supposed to be small—an improved bound on ‖η‖L1(Cj ) in all cubes Cj . Let us continue the
process. Suppose that for all j

‖η‖L1(Cj ) ≤ φ (73)

where φ = φ(θ,h) represents the latest improvement. Then

1 + ‖η+‖∞ ≤ exp[D1Vmaxφθ ] (74)

—so that ‖η+‖∞ � D1Vmaxφθ—and

‖η‖∞ ≤ D1Vmaxφθ + κ (75)

which, at least for a while, represents an improvement on the various L1-norms.
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The procedure is no longer beneficial if φ is on the order of κ . E.g. we may stop when
κ ≥ φ[[2a]−d −θVmaxD1]—where it is assumed that θ is small enough so that the coefficient
of φ is positive. We arrive at an overall bound:

‖η‖∞ ≤ caκ ≤ cbθh

where the c’s are constants of order unity independent of L and θ (provided that the latter
is sufficiently small). Clearly, for θ small enough, this cannot be consistent with ‖ηρ0‖1 = h

unless h = 0.
Thus, we are done with the proof unless there are bad blocks where the local L1-norm

of η is in excess of εθ−1. In fact, we will present an additional hierarchy of bad blocks. The
above blocks will be the core blocks which will be denoted by C. We shall define blocks Bn,
n = 0,1, . . . s by

Bn = {Cj | εθn < ‖η‖L1(Cj ) ≤ θn} (76)

and (unfortunately) other bad blocks

B′
n = {Cj | εθn−1 ≥ ‖η‖L1(Cj ) > θn}. (77)

Thus it is seen that our ε should be small enough to absorb various constants which crop
up but large compared to the assumed value of θ . The hierarchy of these sets stops when
the L1-norm is comparable to κ—pretty much as in the previous argument. Here we shall
say that s is defined so that blocks outside the hierarchy have local L1-norm of η less than a
constant Q0 times κ with Q0 to be described shortly. Such blocks will be informally referred
to as background blocks.

We order the hierarchy in the obvious fashion:

· · · B′
n � Bn � B′

n+1 � · · · (78)

with every element of the hierarchy considered to be above the background blocks and below
the core blocks.

Our next claim is that for any block in the hierarchy there must be a neighboring
block which is further up the hierarchy. Indeed suppose not and that, e.g., Cj ∈ Bn. If all
neighbors—that is to say all blocks Cj ′ with j ′ ∼ j—were only at the level Bn or below, we
would have, for x ∈ Cj

1 + η+(x) ≤ eθD1Vmaxθn

(79)

and

η−(x) ≤ θD1Vmaxθ
n + κ. (80)

This, for most cases, implies that ‖η‖L∞(Cj ) is of the order θn+1 which precludes Cj ∈ Bn; a
similar derivation applies to the B′

n. At the very bottom of the hierarchy, the same situation
holds with any reasonable choice of Q0 which is of the order of unity.

The implication of the preceding claim is that each block in the hierarchy is connected to
the core by a path whose length does not exceed the order of its the hierarchal index.

Our next claim is that (under the hypothesis of non-triviality) the vast majority of the
L1-norm of η is carried by the core and its immediate vicinity. First, let us estimate |C|, the
volume of the core. We argue that

|C| · ε · 1

θ
≤ hLd (81)



The McKean–Vlasov Equation in Finite Volume 377

since the right side is the full L1-norm of η and the left side represents the minimal contri-
bution to this effort on the part of the core. Thus the core volume fraction is the order of θh

which, we remind the reader is supposed small.
Now, by the connectivity property of the hierarchy, (81) can be translated into an estimate

on the volume of the sets Bn, B′
n. Indeed, we may write

|Bn| ≤ |C|D2n
d (82)

where D2 = D2(d) is another constant.
The above two estimates are sufficient to vindicate the claim at the beginning of the

paragraph containing (81). We denote by C� = C ∪ B0 ∪ B′
0 which we call the extended

core. Turning attention to the complimentary set we have, for Bn:

∫
Bn

|η|dx ≤ θn|C|D2n
d [2a]−d ≤ hθLd 1

ε
· θnndD2[2a]−d . (83)

Summing this over all n starting from n = 1 we get a contribution (for all θ sufficiently
small) which is bounded by Kε−1θ2hLd for some constant K . Similarly

∫
B′

n

|η|dx ≤ εθn−1|C|D2n
d [2a]−d (84)

whence the total contribution from the primed portion of the hierarchy on the compliment
of the extended core to ‖η‖1 is no more than K ′θhLd for some constant K ′. Note that
these are small compared to the purported total of hLd . Finally, the contribution from all the
background blocks is surely no more than Q0[2a]−dκ[L/a]d and we recall that κ itself is
bounded above by the order of θh. So, in summary, we arrive at

∫
C�

η+dx ≥ (1 − gθ)hLd (85)

for some constant g which is independent of L and θ (for θ sufficiently small).
With the preceding constraint in mind, let us bound from below the relative entropy

S(ρ) − S(ρ0) =
∫

T
d
L

ρ0(1 + η+) log(1 + η+) +
∫

T
d
L

ρ0(1 − η−) log(1 − η−). (86)

The second term may be bounded below by − 1
2 h. As for the former, since the function is

always positive, we may restrict attention to the set C�. As is not hard to show, the contri-
bution from C� is larger than that of the function which is uniform on C� and has the same
total mass. As a result:

S(ρ) − S(ρ0) ≥ −1

2
h + |C�|

Ld

(
1 + 1

|C�| (1 − gθ)hLd

)
log

(
1 + 1

|C�| (1 − gθ)hLd

)
. (87)

As is not hard to see (and is intuitively clear) this is decreasing in |C�|—meaning we may
substitute the upper bound based on (81): |C�| ≤ LdGθh with G (∝ ε−1) another constant
of order unity independent of L and θ . All in all,

S(ρ) − S(ρ0) ≥ −1

2
h + Gθh

(
1 + (1 − gθ)

G

1

θ

)
log

(
1 + (1 − gθ)

G

1

θ

)
. (88)
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By contrast we have, from (63), that S(ρ) − S(ρ0) is less than a constant times θh. This
along with (88) implies that h = 0 or, assuming that h �= 0 a strict lower bound on θ . Either
of these conclusions allows us to infer the desired result. �

3.3 Catastrophic Behavior

We conclude with some examples of what can go “wrong” if the criterion of thermodynamic
stability is violated. For the benefit of these final results we shall violate condition-K by
assuming the existence of a compactly supported probability density ρ�(x) such that

∫
Rd×Rd

V (x − y)ρ�(x)ρ�(y) dx dy = −u0 (89)

with u0 > 0. First, some specific instances:

Proposition 3.3 If V satisfies either of the following then it violates condition-K

(a) The interaction V satisfies
∫

Rd V (x)dx = −v0 < 0
(b) For some λ < 1, in a λa0 neighborhood of the origin, V integrates to +c0 while for

λa0 ≤ |x| ≤ 2a0, V (x) is bounded above by −v0 where

v0(1 − λd) > c0.

Proof In the first case, we choose

ρ�,�(x) = χ|x|≤�a

1

γ [�a]d

where γ is a geometric constant. It is noted that

lim
�→∞

g(a�)d

∫
Rd

V (x − y)ρ�,�(x)ρ�,�(y) dx dy = −v0 (90)

so the result follows for � sufficiently large.
As for the second case, we simply use ρ�(x) = 1

γ [a0]d χ|x|≤a0 . In performing the integra-
tion ∫

Rd×Rd

V (x − y)ρ�(x)ρ�(y) dx dy

and ignoring the positive contribution from |x − y| < λa0 the result would be not more than
−v0. For each x we must cut out a ball of radius (no more than) λa0 around each point of the
integration and insert a corresponding factor of (no more than) c0. The result is no more than
−(v0(1 − λd) − c0) and we are done. It is noted that this latter result applies immediately to
the case where V is negative in a deleted neighborhood of the origin. �

Theorem 3.4 For potentials that violate condition-K via (89), the McK–V system exhibits
non-physical scaling. In particular, for L sufficiently large,

θT(L) ≤ rL−d

for some r > 0.
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Proof Recalling (49) we have for any L

F [L]
θ (ρ

[L]
0 ) = − logLd + 1

2
θv.

By contrast, if we abide by the recommended density we obtain:

F [L]
θ (ρ�) = S(ρ�) − 1

2
θρ−1

0 u0

where it is noted that S(ρ�) < ∞ by hypothesis and by the restrictive nature of the support
of ρ�, it is independent of L. But then, as soon as − 1

2θu0L
d + S(ρ�) < logLd + 1

2θg0 it
must be that θ ≤ θT. This implies the stated bound. �
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